GENERAL RESEARCH Modeling Electrical Conductivity in Concentrated and Mixed-Solvent Electrolyte Solutions
نویسندگان
چکیده
A comprehensive model has been developed for calculating electrical conductivities of aqueous or mixed-solvent electrolyte systems ranging from dilute solutions to fused salts. The model consists of a correlation for calculating ionic conductivities at infinite dilution as a function of solvent composition and a method for predicting the effect of finite electrolyte concentration. The effect of electrolyte concentration is calculated using an extended form of the mean-sphericalapproximation (MSA) theory coupled with a mixing rule for predicting the conductivities of multicomponent systems on the basis of the conductivities of constituent binary cation-anion subsystems. The MSA theory has been extended to very concentrated and mixed-solvent systems by introducing effective ionic radii that take into account various interactions between ions, solvent molecules, and ion pairs. The model has been coupled with thermodynamic equilibrium computations to provide the necessary concentrations of individual ions in complex, multicomponent systems. The model accurately reproduces experimental conductivity data over wide ranges of composition with respect to both solvents and electrolytes. In particular, the model is shown to be accurate for aqueous acids (e.g., H2SO4, HNO3, and H3PO4) up to the pure acid limit, various nitrates ranging from dilute solutions to fused salts, salts in water + alcohol mixtures, and LiPF6 solutions in propylene and diethyl carbonate.
منابع مشابه
Modeling Thermal Conductivity of Concentrated and Mixed-Solvent Electrolyte Systems
A comprehensive model has been developed for calculating the thermal conductivity of aqueous, nonaqueous, and mixed-solvent electrolyte systems ranging from dilute solutions to fused salts or pure solutes. The model consists of a correlation for calculating the thermal conductivity of solvent mixtures and a method for predicting the effect of electrolyte components. The thermal conductivity of ...
متن کاملPii: S0378-3812(01)00645-8
Recent advances in modeling thermodynamic and transport properties of electrolyte solutions are reviewed. In particular, attention is focused on mixed-solvent electrolyte models, equations of state for high-temperature and supercritical electrolyte systems and transport property models for multicomponent, concentrated solutions. The models are analyzed with respect to their capability of comput...
متن کاملA Liquid Inorganic Electrolyte Showing an Unusually High Lithium Ion Transference Number: A Concentrated Solution of LiAlCl4 in Sulfur Dioxide
We report on studies of an inorganic electrolyte: LiAlCl4 in liquid sulfur dioxide. Concentrated solutions show a very high conductivity when compared with typical electrolytes for lithium ion batteries that are based on organic solvents. Our investigations include conductivity measurements and measurements of transference numbers via nuclear magnetic resonance (NMR) and by a classical direct m...
متن کاملModeling viscosity of concentrated and mixed-solvent electrolyte systems
A comprehensive model has been developed for calculating the viscosity of aqueous or mixed-solvent electrolyte systems ranging from dilute solutions to fused salts. The model incorporates a mixing rule for calculating the viscosity of solvent mixtures and a method for predicting the effect of finite electrolyte concentrations. The mixing rule represents the viscosity of multi-component solvent ...
متن کاملModeling the Thermodynamic Properties of Solutions Containing Polymer and Electrolyte with New Local Composition Model
A new theory model based on the local composition concept (TNRF-modified NRTL (TNRF-mNRTL) model) was developed to express the short-range contribution of the excess Gibbs energy for the solutions containing polymer and electrolyte. An equation represented the activity coefficient of solvent was derived from the proposed excess Gibbs energy equation. The short-range contribution of interaction ...
متن کامل